

DECISION SUPPORT FOR DATA SEGMENTATION (DS2)

SHARPS.org

Presented by Carl Gunter and Mike Berry May 20, 2014

Strategic Health IT Advanced Research Projects (SHARP)

- SHARP Area 1 Security and Health Information Technology (SHARPS), University of Illinois
- SHARP Area 2 Patient-Centered Cognitive Support (SHARPC), University of Texas at Houston
- SHARP Area 3 Health Care Application and Network Design (SMART), Harvard University
- SHARP Area 4 Secondary Use of EHR Information (SHARPN), Mayo Clinic of Medicine
- NIH Affiliate Medical Device "Plug-and-Play" Interoperability Program (MDSHARP), Massachusetts General Hospital, supported by NIH/NBIB Quantum Grant

The Six Challenges

SIX RESEARCH CHALLENGES

FOR THE SECURITY AND PRIVACY OF HEALTH INFORMATION TECHNOLOGY

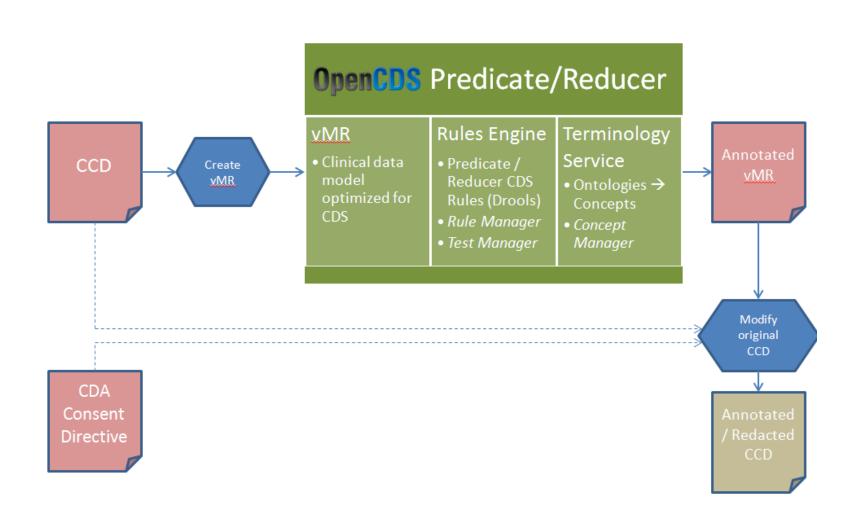
- 1. Access controls and audit
- 2. Encryption and trusted base
- 3. Automated policy
- 4. Mobile health (mHealth)
- 5. Identification and authentication and
- 6. Data segmentation and de-identification

Challenge #6: Data Segmentation & De-Identification

- Patients feel that some types of health data are especially sensitive: records related to mental health, drug abuse, genetics, sexually transmitted diseases, and others
- There is a desire to transmit this type of information only when necessary
- Data segmentation: breaking the EHR into parts
- □ This is a hard problem in many cases
 - History with de-identification (segmenting the personally identifying parts of the record)
 - Case study: HIV
- How do we balance feasibility, privacy, and clinical impact?
- Research challenge: how to segment and measure

DS4P, DS2, and ILHIE Prototype

- Data Segmentation for Privacy (DS4P):
 - ONC S&I Framework initiative
 - Published use cases and an Implementation Guide
 - Sponsored pilot projects to demonstrate the effectiveness of standards-based data segmentation in the context of the use cases
- Decision Support for Data Segmentation (DS2):
 - Research-oriented project to address one of the challenges in certain types of segmentation:
 - Sequestration of a condition and its related clinical facts sometimes leaves clues residual facts such as comorbidities and co-occurrences – that could still reveal the condition to an informed observer
 - DS2 views this as a decision support problem, that is, to treat inference as a function that can be specified by a computer program based on information like machine learning over a body of records.
- □ ILHIE Prototype: A prototype implementation of DS2 for an HIE architecture.



Predicate:

- Identify if a clinical document has a particular type of sensitive data in it
- □ Reducer:
 - Redact portions of the clinical document until corresponding predicate is satisfied
- Safety Checker:
 - Check care plan against non-redacted clinical document

Predicate/Reducer Architecture

Predicate/Reducer Example

Problem List	Medication List
 HIV infection Candidiasis of lung Bacterial infection, unspecified 	 Combivir Norvir Procrit Azithromycin Fluconazole

- 1. An HIV predicate might evaluate the CCD and return "True" (an HIV condition is present in the document).
- 2. A simple HIV reducer might remove the HIV diagnoses and medications (HIV infection, Combivir, Norvir).
- 3. The HIV predicate might evaluate the newly redacted CCD and return "True" again because of the co-occurrent clinical facts remaining in the record which might lead an observer to infer that the patient has HIV.
- 4. A more complex HIV reducer might continue to remove co-occurrent clinical facts until the predicate returns "False." Ultimately, in addition to the HIV, Combivir, and Norvir, it might also remove the Candidiasis, Fluconazole, and Procrit – even though none of them are directly related to HIV.

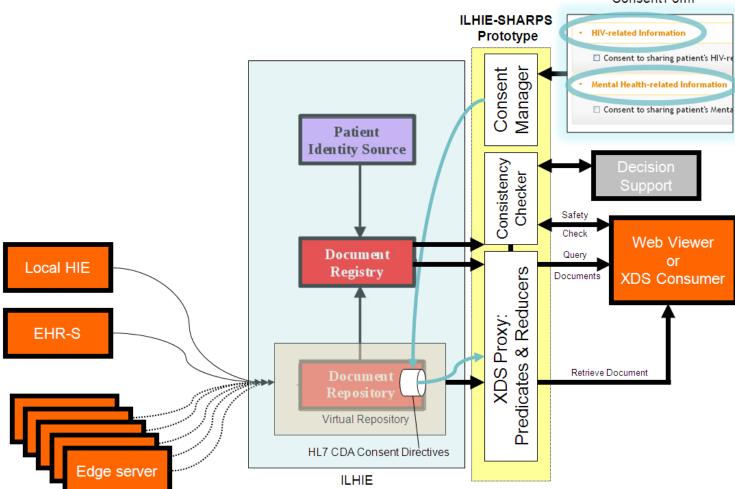
DS2 Focus and Outcomes

- Our DS2 study focused primarily on the development of predicates and reducers based on machine learning over databases of (portions of) EHRs.
 - For instance, we used such records from the problem lists of the Northwestern Memorial Hospital and from sources like the CDC National Hospital Discharge Survey.
- □ The work is described in detail in a pair of reports:
 - One focused on contextual integrity (policy) considerations
 - The other focused technical and architectural considerations, like how to realize predicates and reducers on top of the OpenCDS system.

Inference Analyzer

Look up/refresh this patient Add new concept	Probability of
Look up random patient: Random Patient with HIV infection	5: HIV infection Data: Fictional; Predicate: Bayesian Network trained on NMH problem list data

Patient Problem List (Fictional Patient)										
ICD9 Code \$	ICD9 Description \$	CCS Category \$		Relative Risk 👻	Phi Coefficient ≎	Probability if redacted ≎	Redact	Edit		
042	Human immunodeficiency virus [HIV] disease	HIV infection (5)	0					1		
091.50	Syphilitic uveitis, unspecified	Sexually transmitted infections (not HIV or hepatitis) (9)	0	10.870	0.046	16.9%	🖈 Redact	ľ		
070.33	Chronic viral hepatitis B without mention of hepatic coma with hepatitis delta	Hepatitis (6)	0	8.504	0.069	66.4%	🖈 Redact	i		
682.9	Cellulitis and abscess of unspecified sites	Skin and subcutaneous tissue infections (197)	0	2.532	0.011	55.7%	🖈 Redact	li*		
054.71	Visceral herpes simplex	*Herpes simplex (3006)	0	2.387	0.014	74.5%	🖈 Redact	12		
296.36	Major depressive affective disorder, recurrent episode, in full remission	Mood disorders (657)	0	2.127	0.022	80.2%	★ Redact	ľ		
401.9	Unspecified essential hypertension	Essential hypertension (98)	1	1.080	0.003	85.1%	🖈 Redact	6*		



- We compared a rules-based reducer utilizing an ontology with one based on DS2 machine learning inference using 150 randomly chosen NMH problem lists with HIV, and observed:
 - 78% had no redactions beyond HIV itself with either reducer (asymptomatic).
 - 7% of HIV patients had redactions beyond HIV itself that were the same with both reducers (HIV case definition)
 - 11% of HIV patients were more heavily redacted in the DS2 reducer (HIV case definition + common co-occurrences such as hepatitis)
 - 4% of HIV patients were more heavily redacted in the rules-based reducer (HIV case definition with low correlation such as herpes simplex)

ILHIE Prototype Architecture

Existing XDS-compatible Registry/Repository

Consent Form

Challenges

- Unstructured text
- Explaining probabilistic / machine learning-based redaction to patients and doctors
- Data quality
- Ability of observers to infer specific conditions based on clinical context may vary across different types of providers, levels of training, and medical specialties.
- Observer may have access to additional context not evaluated by a predicate, such as a medical record obtained prior to, or after, the predicate evaluation.

Other uses of DS2

- In addition to privacy-oriented segmentation,
 Predicate/Reducer technology could potentially be used for:
 - Providing a *clinical summary evaluation tool* to suggest possible "missing" diagnoses on patient records for quality review or for point-of-care clinical decision support.
 - Providing an *inverse reducer* that applies a Predicate/Reducer to filter a record to retain only the conditions related to a target condition.
 - Send diagnoses and medications to public health (or clinical research studies) related only to specific conditions
 - Assist physicians when generating referrals to specialists in order to highlight subsets of the clinical summary most relevant to a particular speciality or referral reason.

Learn More about DS2

- Website: <u>http://sharps-ds2.atlassian.net/</u>
- In addition to the prototype, the open source DS2 software repository includes a suite of related tools for:
 - working with clinical documents (CCDs and vMRs)
 - training classifiers and calling them from OpenCDS (open source clinical decision support framework)
 - checking CCDs for drug-drug interactions
 - visualizing the effectiveness and the impact of probabilistic redaction through a web-based "inference analyzer."